Monday, 5 March 2018

المتوسط المتحرك لطريقة التسلسل الزمني


طريقة المتوسطات المتحركة التعليقات هي أوف أوف افترض أن هناك أوقات الفترات المشار إليها والقيم المقابلة للمتغير هي. أولا وقبل كل شيء علينا أن نقرر فترة المتوسطات المتحركة. لسلاسل زمنية قصيرة، ونحن نستخدم الفترة من 3 أو 4 القيم. لسلسلة زمنية طويلة، قد تكون الفترة 7 أو 10 أو أكثر. أما بالنسبة للمسلسل الزمني الفصلي، فنحن نحسب دائما متوسطات تأخذ 4 أرباع في المرة الواحدة. في سلسلة زمنية شهرية، يتم حساب المتوسطات المتحركة لمدة 12 شهرا. لنفترض أن سلسلة زمنية معينة هي في السنوات، ونحن قد قرر لحساب المتوسط ​​المتحرك لمدة 3 سنوات. وتحسب المتوسطات المتحركة المشار إليها على النحو التالي: تجانس البيانات يزيل الاختلاف العشوائي ويظهر الاتجاهات والمكونات الدورية الكامنة في جمع البيانات التي اتخذت مع مرور الوقت هو شكل من أشكال الاختلاف العشوائي. هناك طرق للحد من إلغاء التأثير بسبب الاختلاف العشوائي. تقنية غالبا ما تستخدم في الصناعة هو تمهيد. هذه التقنية، عندما تطبق بشكل صحيح، يكشف بشكل أكثر وضوحا الاتجاه الكامن، المكونات الموسمية ودورية. هناك مجموعتان متميزتان من طرق التجانس طرق المتوسط ​​طرق التمدد الأسي أخذ المتوسطات هو أبسط طريقة لتسهيل البيانات سنقوم أولا بالتحقيق في بعض أساليب المتوسط، مثل المتوسط ​​البسيط لجميع البيانات السابقة. مدير مستودع يريد أن يعرف كم المورد نموذجي يسلم في 1000 دولار الوحدات. تأخذ هيش عينة من 12 موردا، عشوائيا، والحصول على النتائج التالية: الوسط الحسابي أو متوسط ​​البيانات 10. يقرر المدير استخدام هذا التقدير كمصروف لنفقات مورد نموذجي. هل هذا تقدير جيد أو سيء متوسط ​​الخطأ المئوي هو طريقة للحكم على مدى جودة النموذج هو سنقوم بحساب متوسط ​​الخطأ التربيعي. المبلغ الحقيقي الذي تم إنفاقه ناقص المبلغ المقدر. مربع الخطأ هو الخطأ أعلاه، تربيع. و سس هو مجموع الأخطاء التربيعية. و مس هو متوسط ​​الأخطاء التربيعية. نتائج مس على سبيل المثال النتائج هي: أخطاء خطأ وتربيع التقدير 10 السؤال الذي يطرح نفسه: هل يمكننا استخدام المتوسط ​​للتنبؤ بالدخل إذا كنا نشك في اتجاه A نظرة على الرسم البياني أدناه يظهر بوضوح أننا لا ينبغي أن نفعل ذلك. متوسط ​​يزن جميع الملاحظات السابقة بالتساوي وباختصار، فإننا نذكر أن المتوسط ​​البسيط أو المتوسط ​​لجميع الملاحظات السابقة ليس سوى تقدير مفيد للتنبؤ عندما لا تكون هناك اتجاهات. إذا كانت هناك اتجاهات، استخدم تقديرات مختلفة تأخذ في الاعتبار هذا الاتجاه. ويزن المتوسط ​​جميع الملاحظات السابقة بالتساوي. على سبيل المثال، متوسط ​​القيم 3، 4، 5 هو 4. ونحن نعلم، بطبيعة الحال، أنه يتم حساب المتوسط ​​عن طريق إضافة كل القيم وتقسيم المجموع حسب عدد القيم. طريقة أخرى لحساب المتوسط ​​عن طريق إضافة كل قيمة مقسومة على عدد القيم، أو 33 43 53 1 1.3333 1.6667 4. ويسمى المضاعف 13 بالوزن. بشكل عام: شريط فراك مبلغ اليسار (فراك اليمين) X1 اليسار (فراك الحق) X2،. ،، اليسار (فراك يمين) شن. (يسار (فراك يمين)) هي الأوزان، وبطبيعة الحال، فإنها تصل إلى 1.6.2 المتوسطات المتحركة ما 40 إليكساليس، النظام 5 41 في العمود الثاني من هذا الجدول، يظهر متوسط ​​متحرك من النظام 5، وتوفير تقدير دورة الاتجاه. والقيمة الأولى في هذا العمود هي متوسط ​​الملاحظات الخمس الأولى (1989-1993)، والقيمة الثانية في العمود 5-ما هي متوسط ​​القيم 1990-1994 وهكذا. كل قيمة في العمود 5-ما هي متوسط ​​الملاحظات في فترة الخمس سنوات التي تركز على السنة المقابلة. لا توجد قيم للسنتين الأوليين أو العامين الماضيين لأننا لا نملك ملاحظتين على أي من الجانبين. في الصيغة أعلاه، العمود 5-ما يحتوي على قيم قبعة مع k2. لمعرفة ما يبدو عليه تقدير دورة الاتجاه، فإننا نرسمه مع البيانات الأصلية في الشكل 6.7. مؤامرة 40 إليكساليس، الرئيسية سسيدكوتال الكهرباء السكنية، يلب كوغوكوت. زلاب كوتيركوت 41 لينس 40 ما 40 إليساليس، 5 41. كول كوتريدكوت 41 لاحظ كيف أن الاتجاه (باللون الأحمر) هو أكثر سلاسة من البيانات الأصلية ويلتقط الحركة الرئيسية للسلسلة الزمنية دون كل التقلبات الطفيفة. ولا تسمح طريقة المتوسط ​​المتحرك بتقديرات T حيث تكون t قريبة من نهايات السلسلة، وبالتالي لا يمتد الخط الأحمر إلى حواف الرسم البياني على أي من الجانبين. في وقت لاحق سوف نستخدم أساليب أكثر تطورا لتقدير دورة الاتجاه التي تسمح التقديرات بالقرب من النهاية. ويحدد ترتيب المتوسط ​​المتحرك مدى نعومة تقدير دورة الاتجاه. بشكل عام، يعني النظام الأكبر منحنى أكثر سلاسة. يوضح الرسم البياني التالي تأثير تغيير ترتيب المتوسط ​​المتحرك لبيانات مبيعات الكهرباء السكنية. المتوسطات المتحركة البسيطة مثل هذه هي عادة من ترتيب فردي (على سبيل المثال 3، 5، 7، وما إلى ذلك) وهذا هو حتى أنها متماثلة: في المتوسط ​​المتحرك للنظام m2k1، هناك k الملاحظات السابقة، k الملاحظات في وقت لاحق والمراقبة الوسطى التي يتم حساب متوسطها. ولكن إذا كان m حتى، فإنه لن يكون متماثلا. المتوسطات المتحركة للمتوسطات المتحركة من الممكن تطبيق متوسط ​​متحرك على المتوسط ​​المتحرك. أحد أسباب القيام بذلك هو جعل المتوسط ​​المتحرك متساويا في الترتيب. على سبيل المثال، قد نأخذ متوسطا متحركا من الترتيب 4، ثم نطبق متوسط ​​متحرك آخر للطلب 2 على النتائج. وفي الجدول 6-2، تم ذلك في السنوات القليلة الأولى من بيانات إنتاج البيرة الفصلية الاسترالية. ber2 lt - ويندو 40 أوسبير، ستارت 1992 41 ma4 lt - ما 40 beer2، أوردر 4. سينتر فالس 41 ma2x4 lt - ما 40 beer2، أوردر 4. سينتر ترو 41 الترميز 2times4-ما في العمود الأخير يعني 4-ما تليها 2-ما. يتم الحصول على القيم في العمود الأخير من خلال اتخاذ متوسط ​​متحرك من الترتيب 2 من القيم في العمود السابق. على سبيل المثال، القيمتين الأوليين في العمود 4-ما هي 451.2 (443410420532) 4 و 448.8 (410420532433) 4. القيمة الأولى في العمود 2times4-ما هي متوسط ​​هذين: 450.0 (451.2448.8) 2. عندما يتبع 2-ما المتوسط ​​المتحرك حتى النظام (مثل 4)، ويسمى متوسط ​​متحرك تركز على النظام 4. وذلك لأن النتائج هي الآن متماثل. لنرى أن هذا هو الحال، يمكننا كتابة 2times4-ما على النحو التالي: بدء قبعة أمبير فراك بيغفراك (y y y y) فراك (y y y y) كبير أمبير فراك y frac14y frac14y frac14y frac18y. نهاية هو الآن المتوسط ​​المرجح للرصدات، ولكنه متماثل. ومن الممكن أيضا توليفات أخرى من المتوسطات المتحركة. على سبيل المثال يتم استخدام 3times3-ما غالبا، ويتكون من متوسط ​​متحرك من النظام 3 متبوعا بمتوسط ​​متحرك آخر من النظام 3. بشكل عام، يجب أن يتبع النظام حتى ما من قبل ما حتى أمر ما لجعلها متماثلة. وبالمثل، ينبغي أن يتبع أمر ما الفردية من قبل ما الفردية ترتيب فردي. تقدير دورة الاتجاه مع البيانات الموسمية الاستخدام الأكثر شيوعا للمتوسطات المتحركة المتمركزة هو في تقدير دورة الاتجاه من البيانات الموسمية. النظر في 2times4-ما: قبعة فراك y frac14y frac14y frac14y frac18y. عند تطبيقه على بيانات ربع سنوية، يعطى كل ربع سنة نفس الوزن حيث تطبق الفترة األولى واألخيرة على نفس الربع في السنوات المتعاقبة. وبناء على ذلك، سيتم حساب متوسط ​​التغير الموسمية، كما أن القيم الناتجة عن هذه القيم لن تكون متبقية أو معدومة. ويمكن الحصول على تأثير مماثل باستخدام 2times 8-ما أو 2times 12-ما. وبوجه عام، فإن m 2 ما يعادل متوسط ​​متحرك مرجح لترتيب m1 مع أخذ جميع الملاحظات 1m الوزن باستثناء المصطلحين الأول والأخير الذي يأخذ الأوزان 1 (2M). حتى إذا كانت الفترة الموسمية حتى و من أجل م، استخدم 2times م-ما لتقدير دورة الاتجاه. إذا كانت الفترة الموسمية غريبة وترتيب m، استخدم m-ما لتقدير دورة الاتجاه. على وجه الخصوص، يمكن استخدام 2 مرات 12-ما لتقدير دورة الاتجاه من البيانات الشهرية و 7-ما يمكن استخدامها لتقدير دورة الاتجاه من البيانات اليومية. ومن شأن الخيارات الأخرى لترتيب درجة الماجستير أن تؤدي عادة إلى تلوث تقديرات دورة الاتجاه بالموسمية في البيانات. مثال 6.2 تصنيع المعدات الكهربائية يبين الشكل 6.9 2 مرات 12-ما المطبقة على مؤشر أوامر المعدات الكهربائية. لاحظ أن الخط السلس لا يظهر موسمية وهو تقريبا نفس دورة الاتجاه هو مبين في الشكل 6.2 والتي تم تقديرها باستخدام طريقة أكثر تعقيدا بكثير من المتوسطات المتحركة. وأي خيار آخر لترتيب المتوسط ​​المتحرك (باستثناء 24 و 36 وما إلى ذلك) قد يؤدي إلى خط سلس يظهر بعض التقلبات الموسمية. مؤامرة 40 إليسيكيب، يلاب كوت أوامر جديدة إندكسكوت. كول كوغرايكوت، الرئيسية تصنيع المعدات الكهربائية (منطقة اليورو) كوت 41 خطوط 40 أماه 40 إليسيكيب، النظام 12 41. كول كوريدكوت 41 المتوسطات المتحركة المرجح مجموعات من المتوسطات المتحركة تؤدي إلى المتوسطات المتحركة المرجح. على سبيل المثال، 2x4-ما ناقش أعلاه يعادل 5-ما المرجحة مع الأوزان التي قدمها فراك، فراك، فراك، فراك، فراك. وبصفة عامة، يمكن كتابة m-M المرجح كقيمة t k k a y y حيث k (m-1) 2 وتعطى الأوزان بواسطة النقاط والنقاط أك. من المهم أن الأوزان كل المبلغ إلى واحد وأنها متماثلة بحيث آج a. و M-ما بسيط هو حالة خاصة حيث جميع الأوزان تساوي 1M. والميزة الرئيسية للمتوسطات المتحركة المرجحة هي أنها تعطي تقديرا أكثر سلاسة لدورة الاتجاه. بدلا من الملاحظات دخول وترك الحساب بالوزن الكامل، يتم زيادة وزنها ببطء ثم انخفض ببطء مما أدى إلى منحنى أكثر سلاسة. وتستخدم على نطاق واسع بعض مجموعات محددة من الأوزان. وترد بعض هذه التوصيات في الجدول 6-3.

No comments:

Post a Comment